Current and Future Prospects for the Treatment of Food Allergy

Robert A. Wood, MD
Professor of Pediatrics and International Health
Director, Pediatric Allergy and Immunology
Director, Pediatric Clinical Research Unit
Johns Hopkins University School of Medicine

President-Elect, American Academy of Allergy Asthma and Immunology
Disclosure

In relation to this presentation, I declare the following real or perceived conflicts of interest:

- **Research Support** from:
 - NIH
 - Aimmune
 - DBV
 - Astellas
 - HAL Allergy
Learning Objectives

• Describe the current treatments under study

• Recognize of the risks associated with these treatments

• Identify potential future treatments under development
Food Allergen Immunotherapy

• The risks of traditional subcutaneous immunotherapy with intact allergens appear to outweigh the benefits

• Alternative approaches are therefore being investigated that may change this equation
 • Modification of the allergens
 • DNA vaccines
 • Adjunctive treatment
 • Adjuvants
 • Medications to reduce adverse reactions
 • Different routes of delivering intact allergens
 • Oral (OIT)
 • Sublingual (SLIT)
 • Epicutaneous (EPIT)
Food Allergen Immunotherapy

Key questions to consider:

- What degree of protection will the treatment provide?
 - Add an element of safety?
 - Allow intro of the food(s) into the diet?
- Does the treatment provide any long term protection (or will continuous treatment be needed)?
- How safe is it? Are the potential benefits worth the risk?
- Is it feasible for general use?
CoFAR Egg OIT Trial: Study Design

- Randomized, placebo controlled, multicenter
- 10 month escalation to 2000 mg maintenance, then 5 OFC to 5 grams of egg protein (“desensitization challenge”)
- Un-blinding, 12-36 additional months of daily maintenance, repeat 10 gram OFC annually
- If OFC successful: stop dosing for 8 weeks and repeat OFC (“tolerance” / SU challenge)
- Primary endpoint: Sustained Unresponsiveness at month 24
Egg OIT: Oral Food Challenge Results Summary

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Egg OIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 gm desensitization OFC (Month 10)</td>
<td>0/15 (0%)</td>
<td>21/40 (52.5%)</td>
</tr>
<tr>
<td>10 gm desensitization OFC (Month 22)</td>
<td>0/15 (0%)</td>
<td>30/40 (75%)</td>
</tr>
<tr>
<td>10 gm tolerance OFC (Month 24)</td>
<td>0/15 (0%)</td>
<td>11/40 (27.5%)</td>
</tr>
</tbody>
</table>

Key Results:

- 75% were desensitized after 22 months of OIT
- 19 out of 30 who were desensitized at 22 months lost protection after avoiding egg for 8 weeks
Long-term treatment with egg oral immunotherapy enhances sustained unresponsiveness that persists after cessation of therapy

Table 1. Food Challenge Defined Clinical Outcomes with Long-term Egg OIT

<table>
<thead>
<tr>
<th>Time from Egg OIT Initiation</th>
<th>Desensitization</th>
<th>Sustained Unresponsiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 months</td>
<td>30/40 (75%)</td>
<td>11/40 (27.5%)</td>
</tr>
<tr>
<td>36 months</td>
<td>32/40 (80%)</td>
<td>19/40 (47.5%)</td>
</tr>
<tr>
<td>48 months</td>
<td>32/40 (80%)</td>
<td>21/40 (52.5%)</td>
</tr>
</tbody>
</table>

In the 22 subjects still dosing in years 3 and 4, 54.5% still reported reactions with dosing.
When compared with subjects not achieving SU, subjects achieving SU had higher IgG4 values (P<.001)
Egg Consumption at Follow-Up (Year 4)

Concentrated Egg

![Chart showing Egg Consumption at Follow-Up (Year 4) for Concentrated Egg](chart_concentrated_egg)

Baked Egg

![Chart showing Egg Consumption at Follow-Up (Year 4) for Baked Egg](chart_baked_egg)

Legend
- **Daily**
- **Several times a week**
- **Weekly**
- **Monthly**
- **Less than monthly**
- **Strict avoidance**
- **Not eating**
Comparison of milk oral and sublingual immunotherapy
(Keet et al JACI 2012)

All subjects began dosing with SLIT, then randomized to further dose escalation to:
- SLIT: 7 mg daily (~1/20 teaspoon) given as 5 squirts x 3
- OIT: 1000 mg (= one oz) or 2000 mg (= 2 oz)
- Primary endpoint desensitization to 8 grams of milk protein after 15 months of treatment
At 15 mo, 10% desensitized with SLIT, 60% with OIT (p<0.001 SLIT vs. OIT)

Keet et al JACI 2012
Milk SLIT vs OIT: Challenge Summary

<table>
<thead>
<tr>
<th></th>
<th>SLIT/SLIT</th>
<th>SLIT/OIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdrew</td>
<td>0/10</td>
<td>2/20</td>
</tr>
<tr>
<td>Passed full desensitization (8 gram) challenge†</td>
<td>1/10</td>
<td>14/18</td>
</tr>
<tr>
<td>Passed one week off therapy</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Passed six weeks off therapy</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Threshold dose at 1 and 6 week follow-up challenges</td>
<td>8000mg</td>
<td>2540 - 8000mg</td>
</tr>
</tbody>
</table>

† p=0.002 SLIT vs. OIT

Keet et al JACI 2012
Milk SLIT vs OIT – Adverse Reactions

• Overall reaction rates were similar (27 – 33% of all doses, escalation and maintenance)
• SLIT reactions were almost entirely local (oral)
• While reactions with OIT were most often local,
 • GI symptoms in 8 – 10% of doses (90% of subjects)
 • Urticaria in 4% (55% of subjects)
 • Lower respiratory in 2 – 3% (40% of subjects)
 • Multisystem reactions in 0.5 – 1% (30% of subjects)
• Antihistamines were needed in 1% of SLIT doses compared to 16% of OIT doses
Summary of OIT Efficacy (>30 studies)

• Most patients can be successfully desensitized

• The level of desensitization is measured in grams of food protein (usually sufficient to introduce the food into the diet)

• The desensitization is transient in most patients without ongoing exposure

• It is possible that sustained unresponsiveness is more common:
 • In younger children (The DEVIL Study, Vickery et al JACI 2017)
 • With co-administration of probiotics (Tang et al, JACI 2015)
• 40 children aged 9 to 36 months randomized to receive OIT at maintenance doses of 300 or 3000 mg

• SU assessed 4 weeks after stopping OIT

• Outcomes were compared with 154 matched standard-care controls.

• 29 of 37 (78%) in the intent-to-treat analysis achieved SU (300-mg arm, 17 of 20 [85%]; 3000 mg, 12 of 17 [71%]) over a median of 29 months.

• Adverse reactions during OIT were common but all were mild to moderate.
Summary of adverse reactions with OIT

- The types and frequency of reactions appear very similar for milk, egg, peanut, and wheat.
- Overall reaction rates are extremely high – affecting virtually all patients – but most reactions are mild.
- Moderate reactions occur in <10% of doses, severe reactions and / or reactions treated with epinephrine occur in <1% of doses.
- However, since so many doses are needed, on a per patient basis, significant reactions are very common.
 - At least twice as common – and more likely 10 – 20 times more common – than would be expected with strict avoidance.
Summary of adverse reactions with OIT

• Chronic GI symptoms are common, and the most common reason to discontinue therapy (10-25%)
• The true incidence of EoE is not clear
• Are the benefits worth the risk?
• Is co-treatment with omalizumab valuable, and worth the cost?
• Most of the answers to these questions will depend on long term outcomes
Conclusions

• In this first randomized, double-blind, placebo-controlled trial of omalizumab in combination with food OIT, we found significant improvements in measurements of safety but not in outcomes of efficacy (desensitization or SU)

• Safety was improved with regard to acute reactions but not GI symptoms

• With or without omalizumab, most subjects could be desensitized to a high dose (10 g) of milk protein over a 24-month period, but half had increased reactivity after an 8-week period of avoidance
Long-Term Follow-up of Milk OIT
(Keet et al, J Allergy Clin immunol 2013)

- 32 patients followed from 2 initial milk OIT studies
- 3 – 5 years after study completion:

<table>
<thead>
<tr>
<th>Milk Consumption</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted</td>
<td>6 (19%)</td>
</tr>
<tr>
<td>At least 1 serving/day but not unrestricted</td>
<td>10 (31%)</td>
</tr>
<tr>
<td>Some uncooked</td>
<td>9 (28%)</td>
</tr>
<tr>
<td>Minimal, baked only</td>
<td>2 (6%)</td>
</tr>
<tr>
<td>None (strict avoidance)</td>
<td>5 (16%)</td>
</tr>
</tbody>
</table>
Symptoms at Follow-up (N=32)

<table>
<thead>
<tr>
<th>Category</th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No symptoms</td>
<td>8</td>
<td>25%</td>
</tr>
<tr>
<td>Occasional symptoms</td>
<td>7</td>
<td>22%</td>
</tr>
<tr>
<td>Frequent symptoms</td>
<td>12</td>
<td>38%</td>
</tr>
<tr>
<td>GI</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Upper Respiratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lower Respiratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No milk consumption</td>
<td>5</td>
<td>16%</td>
</tr>
<tr>
<td>Systemic reaction, # (%)</td>
<td>10</td>
<td>31%</td>
</tr>
<tr>
<td>Used epinephrine, # (%)*</td>
<td>3</td>
<td>10%</td>
</tr>
</tbody>
</table>

Keet et al JACI 2013
Milk OIT Follow-up: Conclusions
(Keet et al, J Allergy Clin Immunol 2013)

- Although we had felt that most participants in these two milk OIT trials had had very positive outcomes, 3-5 years later only 25% consume milk without symptoms.

- Over time, some subjects became far more reactive than they had been early in therapy.

- Long term success appears to be related to ongoing milk exposure (key question: why did exposure decrease from what was recommended).

- Long-term follow-up of OIT is essential.
CoFAR6: EPIT for Peanut Allergy

Randomization 1:1:1

Enrollment N=75

Entry OFC positive to cumulative dose of ≤1044 mg peanut protein

250 µg Peanut EPIT

100 µg Peanut EPIT

Placebo

Immune assays: baseline, 12, 24, 52 weeks

Week 52
5044 mg OFC

Week 130
5044 mg OFC [End of study]

In Press JACI 2016
CoFAR6: Defined Endpoints

Primary endpoint

– The proportion of subjects with a treatment success following 52 weeks of blinded treatment

– Treatment success defined as:

 • Passing a 5044 mg OFC at week 52

 OR

 • by a ≥10-fold increase in the successfully consumed dose (SCD) of peanut protein at week 52 compared to baseline OFC (Same as the VIPES trial)
Peanut EPIT: Treatment Success

<table>
<thead>
<tr>
<th></th>
<th>Placebo N (%)</th>
<th>100 mg N (%)</th>
<th>250 mg N (%)</th>
<th>Total* N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Outcome*</td>
<td>3 (12)</td>
<td>11 (45.8)</td>
<td>12 (48)</td>
<td>25 (35)</td>
</tr>
<tr>
<td>SCD >1044 mg protein</td>
<td>2 (12)</td>
<td>3 (12.5)</td>
<td>7 (28)</td>
<td>13 (17.6)</td>
</tr>
<tr>
<td>SCD >1044 mg protein + 10-fold increase</td>
<td>2 (8)</td>
<td>2 (8.3)</td>
<td>4 (16)</td>
<td>8 (10.8)</td>
</tr>
</tbody>
</table>

*P=0.005 Placebo vs 100 µg, P=0.003 Placebo vs 250 µg, P=0.48 100 µg vs 250 µg

**P=0.54 Placebo vs 100 µg, P=0.12 Placebo vs 250 µg, P=0.12 100 µg vs 250 µg

***P=0.55 Placebo vs 100 µg, P=0.26 Placebo vs 250 µg, P=0.27 100 µg vs 250 µg
Change in Successfully Consumed Dose: Baseline to Week 52 by Treatment Group

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Median Dose (mg)</th>
<th>IQR (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0</td>
<td>-40, 1.0</td>
</tr>
<tr>
<td>100 µg Peanut</td>
<td>43</td>
<td>0, 140</td>
</tr>
<tr>
<td>250 µg Peanut</td>
<td>130</td>
<td>30, 600</td>
</tr>
</tbody>
</table>

Placebo v 100µg
P=0.014

Placebo v 250µg
P=0.003

100 µg v 250 µg
P=0.48

Solid lines represent median values
Hatched lines represent the upper and lower interquartile range
Treatment Response may be Greater in Younger Children (4-11 yrs)

P=0.006, age by treatment interaction with age as dichotomous variable
Safety of Peanut EPIT: Dosing Reactions

<table>
<thead>
<tr>
<th></th>
<th>Placebo (%)</th>
<th>100 mg (%)</th>
<th>250 mg (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Reaction (% per dose)</td>
<td>14.4</td>
<td>79.8</td>
<td>79.8</td>
</tr>
<tr>
<td>Patch Site* (Median % doses/subject)</td>
<td>1.6</td>
<td>92.8</td>
<td>96.1</td>
</tr>
<tr>
<td>Patch Site (Grade 2)</td>
<td>1.6</td>
<td>18.7</td>
<td>23.4</td>
</tr>
<tr>
<td>Patch Site (Extension beyond site)</td>
<td>1.6</td>
<td>8.9</td>
<td>16.2</td>
</tr>
<tr>
<td>Non-patch Site</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- Adherence was high – 97%
- No study-related SAEs reported
- No epinephrine use with dosing symptoms
- 1 withdrawal per protocol for grade 3 and 4 patch site reactions

*P<0.01, placebo vs. active EPIT; P=NS, 100 µg vs. 250 µg

1 subject on 100 µg with systemic hives, treated with oral antihistamines
CoFAR6: Patch Site Reaction Scoring

<table>
<thead>
<tr>
<th>Grade</th>
<th>Skin Reaction Description</th>
<th>Skin Reaction Example Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1A</td>
<td>Redness only</td>
<td></td>
</tr>
<tr>
<td>Grade 1B</td>
<td>Redness and hard or stiff skin</td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td>Redness and a few bumps</td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>Redness with many bumps or spreading bumps</td>
<td></td>
</tr>
<tr>
<td>Grade 4</td>
<td>Redness with blisters</td>
<td></td>
</tr>
</tbody>
</table>
Peanut EPIT is associated with modest but significant change in consumed peanut protein (43-130 mg) when compared to placebo after 52 weeks of blinded EPIT

- Greater impact in younger children (4-11 yo)

Adherence to EPIT and trial retention was high (97%)

Peanut EPIT is safe with mild-moderate patch site reactions predominating

Immunologic changes are modest but significant

Open-label extension to week 130 of active therapy from this study and VIPES will provide additional information on treatment effect
So Where Do We Go From Here?

- What do patients / families want?
- What do doctors’ want?
- What do these treatments really offer?
 - Degree of protection
 - Duration of protection
 - Long term acceptability
- Is the risk / benefit ratio acceptable?
- Will this be cost effective?
- What are the next steps in research?
Current Status of Food Immunotherapy

• Further study is clearly needed to:
 • Minimize adverse reactions
 • Improve efficacy, ideally including induction of long term protection
 • Identify biomarkers, especially of
 • those at highest risk of adverse reactions
 • those at highest risk to lose protection
 • Long term studies to make certain that these treatments will do more good than harm
Additional IT Studies Currently Underway

- Phase 3 studies of peanut patch and low dose peanut OIT
- Milk patch (Phase 2)
- OIT with other foods (e.g. wheat, tree nuts)
- Peanut OIT in 1-3 year olds (IMPACT study)
- Numerous multi-food OIT studies
- DBPC study of peanut OIT and probiotic
- Additional studies with omalizumab (with OIT)
- Studies of Chinese herbs (with and without OIT)
Novel Therapies Underway or in Development

- DNA Vaccine(s)
- SCIT using a chemically modified peanut protein
- Other approaches using modified allergens
- Peanut SLIT with the adjuvant GLA
- Peanut / CPG nanoparticle SLIT
- Trials of other biologic agents, alone or in combination with allergen specific immunotherapy (for prevention or treatment)
 - Omalizumab
 - Dupilumab
 - Anti-TSLP
 - Anti-IL-25
 - Anti-IL-33